CHAPTER 23—WHERE YOU’RE GOING

Along with understanding how the homework problems work, you should also:
1.) Talk intelligently about conductors and non-conductors (insulators).

2.) From the examination of a charge configuration, be able to tell in what direction
the force on a test charge placed somewhere in proximity would be.

3.) Understand the parameters used in Coulomb’s Law.
4.) Understand what electric fields are.
5.) Be able to interpret electric field lines. Be able to construct electric field lines.

6.) Given an electric field, be able to determine the electric force that acts on a point
charge in the field.

7.) Be able to execute a Newton’s Second Law problem with electric fields involved.

8.) Knowing the electric field function for a point charge, understand how to derive an
expression for the electric field vector (both magnitude and direction) generated by a
charge configuration, where the charge distribution can either be discrete or
continuous. That is, understand the technique required to derive electric field
functions for the following situations:

NOTE: Students rightly assume that everything they are presented with is accurate and
error free, primarily because most of their books they use have been written by
committees with loads of resources and lots of time to spend on proof reading the
material (though even then you occasionally find an error in early versions of books like
Serway’s). Obviously, no teacher wants to provide his or her students with information
that is incorrect.

Having said that, you should know that it takes a long, long, long time to generate the
graphics involved in a Power Point like the one you are about to examine, not to
mention the long, long time it takes to use the Formula Editor to write out the math.
There are, in all probability, way over a thousand individual steps involved in the making
of this thirty page-plus Power Point. IF YOU FIND SOMETHING THAT DOESN’T MAKE
SENSE IN THE PAGES THAT FOLLOW, there is a possibility that I've simply made a dumb
error. (Just my proof-reading this--not generating it, but simply re-reading what I've
created--is a good hour’s worth of work).

I've proof read this monster twice, but there’s still a chance | might have messed
something up somewhere along the line. If you find a goof, don’t be put off (mistakes
happen). Just let me know and if | agree with your assessment, I'll make corrections.
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A.) For the point charge configuration shown, derive the expression for the electric field
as it exists at (x,0).

This is a relatively simple problem that is covered on pgs 718-719 in your text. |
spent some time writing it out before realizing it was there, though, so I'm
including it below.

The general procedure for doing
these problems is to separately

determine the DIRECTION of the Q1
electric field generated by each
charge, then attach to each a

directional arrow the field’s
magnitude. The field lines will

probably have to broken into x and b (x\,O)
y-directions, so you’ll probably
have to use the sine and cosine Q,

trick shown in class. If you can
exploit symmetry, do so. All of this
is shown for this problem on the
next three pages.

Shown is the direction and magnitude for each charge-produced electric field:

AR

Note that the trig functions associated with the angles can be were written as shown:

X . a
cos0,=—+5  8in0 =——-—>
2 2 2 2
(x*+a?) (x*+a?)
X . b
cos0, = sin@, = 7




The x and y component of E; and E,:

Putting it all together, taking into consideration the signs as defined by the coordinate
system created for the problem, we get:

Ez( |E2|cose2 + |E]|cose1 )I+( |E2|sin62 - |E1|sin9] )]
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B.) Aring situated in the y-z plane (as
shown) has -Q’s worth of charge on it.
Derive an expression for the electric field
as it exists at (x,0).

See pg 722.

C.) Aring situated in the y-z plane (as
shown) has a constant —\'s worth of
charge-per-unit-length on it. Derive an
expression for the electric field as it exists
at (x,0).

(x,0)

(x,0)

Although this is similar to the problem on pg 722, the linear charge density
function —) gives it a little different twist. How to deal with that is shown on

the next several pages.

We start by defining a differential charge dq residing on a tiny bit of hoop of length ds.
Being a point charge, we know its electric field function will be of the form k %/, , where

o“_n

the charge “q” is really “dg.” We can use that expression and our knowledge of how to
determine the direction of an electric field (green arrow—remember, it’s the direction a
positive test charge would accelerate if put in the field at the point of interest) to
characterize both the direction and magnitude of the differential electric field dE as it

exists at (x,0). This is all shown on the sketch.

_dq




There is a relationship between the length-of-hoop ds upon which dq resides, the
angle subtended by that section (d6) and the radius of the arc R. It is the consequence
of the definition of the radian and is such that ds = Rd@ (this assumes that de is

measured in radians--see sketch).

ds=Rd6

Note that knowing the
differential length ds

(i.e., Rd8), we can multiple
that length by the charge-
per-unit-length A to
determine the differential
charge dq residing on ds.
That is,

dq=12(ds)
=A(Rd0)

With all of this information, we can now write the differential electric field dE in terms
of the charge-per-unit-length A, the radius R of the arc and the differential angle do

that subtends ds. That is:

4B =k

(*x.0)

Note that the linear-charge-
density function is treated as
though it was positive even
though it was defined as
negative. What'’s important is to
determine the MAGNITUDE of dE
due to the charge on ds using the
MAGNITUDE of the charge-per-
unit-length function. The
DIRECTION of the field is
determined using the standard
approach, which is to say asking
the question, “In what direction
would a positive test charge
accelerate (due to dq) if placed at
the point of interest . . . (x,0) in
this case . .. and released.” That
direction is the direction of the
electric field at that point.




Exploiting symmetry: Notice that there is another differential amount of charge “~dq”
on the opposite side of the hoop. Notice also the direction that that differential
electric field sets up. Due to the symmetry of the charge distribution, you can see that
the vertical component of each of the two fields cancels one another out leaving only
the horizontal components with which to deal. Schematically, this looks like:

_dq

“\\These components cancel
outs-._

These components are the
~ same.

_dq

10.)

Apparently, given the symmetry, all we need to determine is the x-component of dE
(that will be dE, =|dE|cos8), then use Calculus to sum that component around the entire
hoop. That will give us the net x-component of the electric field due to all the dg’s.

172

Being clever, we note that the cosine (i.e., the ratio of the
side adjacent to 0 to the hypotenuse) is just “x/r” (see
sketch). Incorporating that information into our x-
component expression, we get:

dE, = dE cos0 .
—dq
ARdO X et
(x> +R?) (x*+ Rz)“2
dE|
ARX
= k—(x2+R2)3/2 do - 0 .

X dE, =|dE|cos@
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Noting that the integral is over d@, and
observing that none of the variable in the

|E| = J.dEcose

expression are functions of 6, we can write: _ J‘M K ARx 40
3
0=0 (Xz +R2) 2
ARX 21
=|k 2 232 -[9:0
(x +R )
RA
=l k—2 l(2n-0)
2 2
(x +R )
As the total charge on the hoop is Q =(2nR)A,
we can rearrange this expression to eliminate A BE=|k RAx (21c)1
and get the same solution as was acquired in (x2 .|.RZ)3/2
the book’s hoop problem. Putting all of that
into vector form, we get: K [(27R)A ]x |+
(e er)”
- k Q z 3/2 i
(x2 +R2)
12)
D.) Asolid disk situated in the y-z plane (as
shown) has Q’s worth of charge on it.
Derive an expression for the electric field
as it exists at (x,0). (x,0)

Although this problem is done on pg 722 in your text, | will lay it out anyhow (it is a
problem that will be connected to a lab down the line).

13)




Some preliminaries:

First, notice is that if there is Q’s worth of charge total
distributed uniformly over the surface area of the disk
(where that area is TR?), the constant, surface-charge-
density (the amount of charge per unit area) is:

o= Qdis;(
mR
G can also be written in differential form. That is, ratio of the differential charge dq to
the differential area dA upon which dq resides will also yield 6. Mathematically, this is:

(x,0)

o= dq = dq=cdA
dA

If we combine the two relationships, we get an expression for dq in terms of Q, R, r and dr.
That is:

dgq= o© dA

~(Sex Yome

TR

14.)

Looking at the plate head-on, all the
variable we discussed and their equivalents
are presented. The red area is a thin swath
of charge dq whose radius is r, whose
differential thickness is dr and whose
differential area is dA. The differential area
dA is mathematically equal to the product
of the swath circumference and its
differential thickness dr. That is:

dA = (circumference)( thickness)
= (2mr) dr

With all of this information, we are ready to tackle our problem.

15.)




To begin with, we've already determine
that the electric field down the central
axis of a hoop is along the central axis
and has a magnitude of:

Qhoop X

E:km

In this problem, E becomes the differential electric field dE due to the swath, Q of the
hoop becomes dq of the swath and the radius R of the hoop becomes the radius r of
the swath. Making those substitutions, we get:

16.)

To determine the total electric field down the axis, we have to sum up all the
differential fields due to all the differentially thin hoops from r=0 to r=R. Noting that k,
X, Q and R are all constants that can be pulled out of the integral, that operation is
shown below.
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Rearranging the negative signs and putting in the
unit vector, this gives us an electric field vector
down the central axis of the disk as being:

dA =

R2

E= (&Qdisk)

Note: If you use ¢ =
our expression, you

(

1

Q disk

T 2

<

1 (_

to derive an expression for Q,, , then substitute that into

i)

will get the same solution as was acquired in the book.

18.)

E.) Athinrod has a net charge Q uniformly
distributed throughout it. Itis L units long
and sits a distance d units from the origin
along the x-axis. Derive an expression for
the electric field as it exists at (0,0). In
fact, set it up for any point in the field.

The (0,0) problem is done in the book on pgs 721, but | didn’t like the way it is

presented so I'm doing it below in expanded version.

As you have done before, you are going to
define an arbitrarily point charge dq residing
on a differential length of rod dx located an
arbitrary distance x from the coordinate
origin (important note: do NOT make the

end of the rod your “arbitrary position” . . . it dq = Adx
has an actual numeric coordinate—"d+."—  —

so it ISN'T an arbitrary point!). All of this — >I
information MUST BE SHOWN on the layout dx

sketch that you create when doing this
problem!!!

19.)




NOTE: Having to do with the linear charge density function A.

If you are not told anything about how the charge is distributed, you will probably do
the problem in terms of lambda (A) and leave it at that. In this problem it was originally
stated that there was Q’s worth of charge on the rod. That means you can write (and
would be expected to write) the charge-per-unit-length ratio as: .

=Y

In some cases, though, the charge density will be given in terms of x. That is, maybe you
are told that A =k,x> In that case, dq would still be equal to Adx, but you’d have to take
the additional step of substituting in getting:

dg= A dx
=(k1x2)dx

In this problem, just to make it more interesting, I'll finish the problem by changing the
lambda to that quoted just above.

20.)

Once you have the layout, at the point of interest determine both the DIRECTION and
MAGNITUDE of the differential electric field dE produced by the presence of dg. Include
any tricky twists that the problem might include (example, substituting in for A). Break
dE into component parts, then utilize symmetry if you can. Once done, integrate to
determine the total E-fld due to the presence of all of the differential charges. For our
set-up, I've shown in color-coded form the pertinent information for the point (0,0)
along with information for a point up the y-axis and for one point “out there” on the
plane (I'm leaving the breaking into components and integrating to your imagination).
Though an answer would be nice, what is really important is the set-up!

dgq
dE,=k—
dE,|=k B =k
£ Adx
\ Adx (klxz) =k T
‘:\}( NN (X2+y2)dx (((X;—x) +y;) j
\(()\( yl) ) ! (stY3)/:\ (klx:)
S i =k ——=dx
S ((Xs_x)u*'}’})
Yi \\}‘% I,
dE, =k 34
L
:kkdx
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F.) For the point charge configuration L
shown, derive the expression for the
electric field as it exists at (x,0). You may

assume that the top half is of length L and (x,0)
has a constant, negative, linear charge L

distribution —A and the bottom half a

constant, positive, linear charge

distribution A.

This problem is interesting enough to be examined over the next four pages.

22)

Let’s begin by looking at what the positive charge density on the bottom half of the
structure is doing at Point (x,0).

Begin by determining the MAGNITUDE and DIRECTION of the differential electric field
dE due to an ARBITRARY differential charge dq along a differentially length of rod dy
located at an ARBITRARY point “y” units from the origin (see sketch for details of that
operation, and remember, the bottom of the rod is NOT arbitrary points).

dy
L T | dq =Ady
4

23




Notice that there exists a similar section of differential charge on the top half that
creates a similar differential electric field, and that due to symmetry the x-components
of those two fields will add to zero. In other words, assuming the two rods are the same
length and have the same charge-density on them (a sketch of the symmetry is shown
below), all we need to do is determine the net vertical component due to the bottom
rod, then double it to take into account the top rod.

A
X-components y-components
L
add to zero ———~ the same ————~_
yT
\
X N
y /’,f\\ //
- ) |
_-- 7 N
1 field due to the negative field due to the positive
L bit of charge from the bit of charge from the
upper part of the rod lower part of the rod
v

24.)

So we are only interested in the y-component. With the angle 6 as defined, that need to
determine dE, = |dE|sin9 . Using the geometry to determine sin6 in terms of x’s and

y’s, etc., (that is, sin® = —), We can write:
X +y2)

dE, = dEsin6

y

25.)




This is the function we want to integrate from y=0 to y=L. Doing so yields:

dEsin6 = k— sin©

:[‘Yx(} fy;)}[(xz +yy2>'”J
{

Noting that we are multiplying by 2 to take care of the top rod, the net electric field in
the y-direction will be:

_ _ 1 L
= 2(1(7\){ (x2 + yz )1/2 ]|y—0
— o) — 1
= 2(10\-){()(2 T )1/2 X]

26.)

G.) A thin rod has a charge density of (.0

alongit’s length. Its total length is L units Note that:
long and it sits as shown. Derive an A =kx

expression for the electric field as it exists sing =21
at (y,.0). '

If you understood
Problem E, this
shouldn’t be too
hard to set up. The
solution follows.
(Note that I've
defined an angle 6
for future use.)
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We need the x and y-components. Using the sine and cosine tricks, we get:

y-direction
E, = [dE,

=[  |dE] sin

X +y12) _ (klx) XJ Yi
J.[k(x2 +yf)d (x2 +yf)”2

dEy = |dE|sin6

€ o =kk,y Bl* X
€ dEX:|dE|COSG 1 IJ.X=0 (X2+y12)3/2
1
=kky, _W -
1
1 1
= —kk -
11 (L2+yf)l/2 v,

28.)

We need the x and y-components. Using the sine and cosine tricks, we get:

x-direction

dEy = |dE|sin6

’ 0
~ dE, =|dE|cos®

| didn’t know off-hand the solution to this integral, so | used a table of integrals. If you run
into something like this on a test, you can leave it in integral form (i.e., go through line 4
and including the limits).

29.)




dE

x-direction

y E, = [ dE,
( 1X) dx =j |dE| cosO
X2 =+ ylz) (k X) X
= l( 2 : 2 (1)( 1/2

_IdElsi (C+yi) (¢ +y2)

' |dE| sin 0
L x>
j 5 =kky, _[x:() (x2 12)3/2 X

) dE, =|dE|cos8 )
x=0

—% + IOg(X + (X2 + ylz)l/z)

+Yy,
| didn’t know off-hand the

solution to this integral, so | used
a table of integrals. If you run
into something like this on a test,

1/2

~tog(L+ (L2 +2)"") | (~1ogy,)

you can leave it in integral form L NP
(i.e., go through line 4 and =—kkyy, (L+y2)” log(L (17 +y7) ) +logy,
including the limits). L Yi
L y
=—kky +log ‘
1)1 (Lz yf)m (L+(L2 + 12)1/2)
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H.) A quarter-circle rod in red has a charge
density of A=k.,0 along it’s length, where 6
is an angular magnitude measured from
the vertical in radians (see sketch). A
second quarter-circle rod in blue has a
similar charge density that differs only in
that it is positive charge along it’s length. If
the radius of the two rods is R, derive an
expression for the electric field as it exists
at (0,0).

As usual, pick a differential amount of charge dq, relate it to lambda via ds, determine
the differential electric field dE at the origin, break dE into its component parts, exploit
symmetry and do the final integral. Easy!!! All of that is shown on the last few pages.
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We begin by defining ds, relating it to dq, then determine the direction and magnitude
of dE at the origin. All of that is shown on the sketch.

ds =Rd6
|dg| =|A|ds = A(Rd6) ds
- (k 0)(Rdo)

dEy = |dE|cosG

32))

Exploiting symmetry, we can see that the y-components of the net field will go to zero
(see sketch below), so all we have to deal with is the x-component.

field due to the negative
bit of charge from the
right part of the rod

y-components
add to zero

X-components
the same

field due to the positive
bit of charge from the e
left part of the rod
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So we are interested in the x-component of the field. The integral we have to deal with
looks like:

E=2[dE, =2 [|dE[sin6
= 2](&(9 de))sine
R

= (%Jjé (6 sin6)dd
R 0=0

How do you do this integral? Physicists tend to be rather casual about the math because
math is a means to an end, not the be-all, end-all (as is the case with mathematicians).
As such, if I'd done this problem on a test and didn’t know how to evaluate the integral,
I'd either leave it as is or look the integral up in a book of integrals (assuming that was a
kosher move on a test). Unfortunately, | left my book of integrals at home, so | did the
next best thing. | asked both Mr. Fay and Mr. Strom for the solution. Both obliged by
deriving it using “integration by part,” a technique | learned forty years ago and promptly
forgot. In any case, the solution to this problem is shown on the next page. (Please
note, this is not an endorsement for blowing off your knowing your Calculus! It’s more
me being honest than anything else.)

34

So we are interested in the x-component of the field. The integral we have to deal with
looks like:

E= (%) jfo(e sinB)do

= 21;1(3 [0 cos0+sin6]

_ 21;1‘3 K—(gj cos(g}rsin(gn—(—(o) cos0+sin0)}

= [(-0+1)—(-0+0)]

% radians
0=0

As a vector, the net electric field at the origin would be a constant:

ﬁ=[2kk3jz
R
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